Detecting Leaks in Abandoned Gas Wells with Fibre-Optic Distributed Acoustic Sensing

Author:

Boone K.1,Ridge A.1,Crickmore R.1,Onen D.1

Affiliation:

1. OptaSense

Abstract

Abstract Before any well is completely abandoned, some jurisdictions have governmental regulations which must be met and carried out by all companies. The main objective of these regulations is to prevent the production of oil and/or gas in the well by isolating and covering all porous zones. Monitoring with fibre-optic distributed acoustic sensing (DAS) systems allows for leak detection within the well bore and mapping migration through the cement with full-wellbore coverage. DAS provides a cost-effective method to accurately determine the depth of a leak or multiple leaks and profile gas movement due to casing failure, failure in wellhead seals, etc. In vertical wells or wells with low deviation, the optical fibre can be easily deployed by attaching a weight bar to the end of a steel tube containing fibre and running it to depth as a temporary installation or left in place as a permanent monitoring capability. Alternatively, a fibre that is already permanently installed behind the casing and cemented in place can also be used. Acoustic events from the gas movement produce a very small strain in the fibre. The strain can be measured at surface and depth-matched using the speed of light in the fibre. After characterizing the flow in the well under open and shut-in conditions, a decision can be made on how to address the leak. This paper will describe DAS technology and how it is deployed as well as show the analysis and results from a casing leak detection trial. Introduction DAS technology utilizes fibre optic cable as a distributed microphone, with high spatial resolution over long distances. In DAS, a short pulse of light is launched into the fibre, as a probe. During the manufacture of the fibre, imperfections created during the cooling of the fibre, cause variations in the refractive index of the glass. These imperfections are very numerous and randomly distributed, and are referred to as scattering sites. When the light probe advances down the fibre, a small portion of its light becomes scattered by the scattering sites. About 0.1%, of the scattered light gets captured by the fibre and is guided back towards the launch direction, and this backscattered light is detected by a detector within the DAS system. Figure 1 shows the relationship between the launched light probe (in blue) and its backscattered response. At time t0, a light probe is launched into the fibre and the figure shows the interaction of the light probe with the fiber, causing backscatter, denoted by red arrows, at some arbitrary time, tn. At some later time tn+1, the backscattered response (in red) has propagated back towards the launch direction, and the light probe (in blue) has continued to propagate towards the end of the fibre. As the light probe propagates down the fibre, a continuous stream of backscattered is light is generated throughout the fibre. The light probe and backscatter detection process is referred to as interrogation.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3