A First Attempt to Predict Reservoir Porosity from Advanced Mud Gas Data

Author:

Anifowose Fatai1,Mezghani Mokhles1,Badawood Saleh1,Ismail Javed1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Porosity, a critical property of petroleum reservoirs, is a key controlling factor of the reservoir storage capacity. It has been conventionally measured from core plugs. Empirical correlations, statistical, and machine learning methods have been employed for indirect estimation of porosity. The results obtained from these approaches are available only after acquiring drilling and wireline logs. Obtaining porosity estimates in real time, ahead of wireline logging, can help in making critical decisions and enabling early assessment of reservoir quality. We present the results of a machine learning approach to predicting porosity from advanced mud gas data. Datasets integrating advanced mud gas data with porosity were gathered from seven wells to prove this concept. The mud gas data includes light and heavy flare gas components. Optimized artificial neural network (ANN) models were applied to the datasets and multivariate linear regression (MLR) models were used as benchmarks. Each well dataset was split into training and validation subsets using a randomized sampling approach with the ratio of 70:30. A 100 ppm cut-off was applied to the total normalized gas. To evaluate the performance of the models, we use correlation coefficients (R) and mean squared error (MSE). The ANN models consistently outperformed the MLR models in all the datasets. The ANN models have training and validation correlation coefficients of up to 0.89 and 0.88, respectively, compared to an average of 0.79 and 0.77 for the MLR models. The training and validation MSEs for the ANN models are as low as 0.0135 and 0.021, respectively, compared to those of the MLR models in the range of 0.0007 and 0.03, respectively. These results indicate the nonlinearity of the relationship between porosity and the gas components. Furthermore, it can be deduced that the approach is feasible and better results are achievable. The randomized sampling ensures that each data point has an equal chance to be used for either training or validation without bias. The cut-off applied to the normalized total gas is a standard practice to eliminate the background gas effect in the mud gas data. This study provides an opportunity to utilize mud gas data beyond the traditional fluid typing and petrophysical correlation purposes. The presented approach has the capability to complement existing reservoir characterization approaches in providing reservoir quality assessments at the early stage of exploration. We plan to apply state-of-the-art machine learning models and perform sensitivity analysis on the gas components in the future to increase the accuracy.

Publisher

IPTC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3