Utilizing Pseudo Well Connections to Simulate Multi-Stage Hydraulic Fracturing - Example Based On the Study of a Tight Gas Asset

Author:

Lokhandwala Aamir1,Joshi Vaibhav1,Dutt Ankit1

Affiliation:

1. Schlumberger

Abstract

Abstract Hydraulic fracturing is a widespread well stimulation treatment in the oil and gas industry. It is particularly prevalent in shale gas fields, where virtually all production can be attributed to the practice of fracturing. It is also used in the context of tight oil and gas reservoirs, for example in deep-water scenarios where the cost of drilling and completion is very high; well productivity, which is dictated by hydraulic fractures, is vital. The correct modeling in reservoir simulation can be critical in such settings because hydraulic fracturing can dramatically change the flow dynamics of a reservoir. What presents a challenge in flow simulation due to hydraulic fractures is that they introduce effects that operate on a different length and time scale than the usual dynamics of a reservoir. Capturing these effects and utilizing them to advantage can be critical for any operator in context of a field development plan for any unconventional or tight field. This paper focuses on a study that was undertaken to compare different methods of simulating hydraulic fractures to formulate a field development plan for a tight gas field. To maintaing the confidentiality of data and to showcase only the technical aspect of the workflow, we will refer to the asset as Field A in subsequent sections of this paper. Field A is a low permeability (0.01md-0.1md), tight (8% to 12% porosity) gas-condensate (API ~51deg and CGR~65 stb/mmscf) reservoir at ~3000m depth. Being structurally complex, it has a large number of erosional features and pinch-outs. The study involved comparing analytical fracture modeling, explicit modeling using local grid refinements, tartan gridding, pseudo-well connection approach and full-field unconventional fracture modeling. The result of the study was to use, for the first time for Field A, a system of generating pseudo well connections to simulate hydraulic fractures. The approach was found to be efficient both terms of replicating field data for a 10 year period while drastically reducing simulation runtime for the subsequent 10 year-period too. It helped the subsurface team to test multiple scenarios in a limited time-frame leading to improved project management.

Publisher

IPTC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3