Quantifying Uncertainty in Production Forecast for Fields With Significant History: A West African Case Study

Author:

Castellini Alexandre1,Gullapalli Irene2,Hoang Viet Thai3,Condon Patrick John1

Affiliation:

1. Chevron Energy Technology Co

2. ChevronTexaco ETC

3. ChevronTexaco Energy Research

Abstract

Abstract Understanding the impact of subsurface uncertainties on production responses is an integral part of the decision making process. A more accurate quantification of the uncertainty band around production forecasts contributes to better business decisions. Traditional experimental design workflows, where a limited set of models represent the key uncertainties in subsurface parameters, might be well suited for new field developments. However, when a field has been produced for several years, all models have to be conditioned to available production data in order to obtain meaningful predictions. Data integration and uncertainty assessment of future performance of the reservoir are indivisible processes that cannot be generally addressed by simple techniques. In this paper we present a method to tackle such complex inverse problems where highly non-linear responses are involved. The goal is to minimize an objective function that stands for the goodness-of-fit of the history-match. The key idea is to use high quality proxies of the objective function to accelerate the search for solutions. An efficient experimental design stage allow for the selection of key parameters while an optimization routine involving Genetic Algorithms (GA) is used to determine the best combinations of parameters. The models that reasonably honor the historical data are selected and provide an estimate of future production. The final distribution of the prediction variables defines the range of uncertainty conditioned to production history. The practicality of the methodology is demonstrated with a study of an off-shore field in West Africa that has several years of complex production history. Introduction Quantifying uncertainty in production forecast for a real field with complex history is a difficult task. Monte Carlo simulations coupled with probabilistic inverse theory is in general not practical due to the large number of simulations required. Efficient alternatives involving proxies and various optimization algorithms have been investigated. The fitness of the model to the observed data (history-match error function) is modeled using response surfaces of various nature, polynomial, kriging or spline for instance.

Publisher

IPTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3