Seismic Interpretation Technologies Advancement and its Impact on Interactive and Iterative Interpretation Workflows

Author:

Badar Muhammad Haseeb1,Ali Syed Sadaqat1,Ghamdi Yasser S.1,Khan Muhammad1

Affiliation:

1. Exploration Application Services Department, Saudi Aramco

Abstract

Abstract Seismic interpretation is a key task and foundation for hydrocarbons exploration and field development. Seismic data provides coverage from basin to reservoir scale workflows for identifying regional structures, delineate prospects and calculate rock properties. In this paper we discuss the evolution of seismic structural and stratigraphic interpretation through key technological milestones. This covers a broad spectrum, from conventional 2D interpretation methodologies to processes that help us see below the quarter wavelength resolution. We have captured the workflows that are redefining seismic interpretation landscape. These include wavelet based interpretation, multi-attribute analysis, spectral decomposition, geobody extraction, cognitive interpretation, pre-stack interpretation and applications of machine learning to seismic interpretation. We also present advancements in the computing environment that provided a paradigm shift in interpretation workflows. We demonstrate how the conventional workflows migrate into interactive and iterative processes at user desktops with multi-domain data access and analysis. We also discuss the hardware enablers such as high end desktop central processing units (CPUs) powered with graphic processing units (GPUs) that were not possible a few years ago. The advancement in technology comes with increased expectation from geoscientists. The workflow that were once considered in specialist domain are now being practiced by early to mid-career professionals. This is made possible with huge strides both in hardware infrastructure powered by clusters and cloud and software technologies. The cognitive interpretation, big data analysis, artificial intelligence, machine and deep learning workflows are becoming embedded components of seismic interpretation. We observe the advancement in 6 key areas that are responsible in transforming the seismic interpretation. The computing technology to handle large datasets and process at much faster pace, visualization technology leading to cognitive interpretation, ability to integrate multidisciplinary and multiscale data, interpretive processing utilizing pre-stack data, global interpretation methods leading to relative geologic time model (RGT) allowing the efficient use of every sample of seismic cube and ability to integrate the machine and deep learning processes that augment seismic interpretation. We present examples of using these technologies to maximize the benefit from seismic interpretation. The future of geoscience data storage as common opensource data format and applying the AI at scale offered through deploying enterprise AI platform is also discussed. The advantages of adopting the modern workflows driven by technology are helping in developing a shared integrated earth modelling environment. This allows the multi-disciplinary teams to use pre and post stack seismic data, rock properties, reservoir models and real-time drilling updates to make informed decisions. This is also helping both in exploration and field development to drill long reach horizontal wells maximizing the reservoir contacts assisted by machine and deep learning.

Publisher

IPTC

Reference9 articles.

1. The Impact of Automated Fault Detection and Extraction Technology on Seismic Interpretation;Al-Maskeen,2019

2. Application of advanced volumeinterpretation (avi) workflows to improve data quality for rapid interpretation;Badar,2011

3. Evolution of seismic Interpretation during the last three decades;Chopra;The Leading Edge,2012

4. The horizon cube: A step change in seismic interpretation!;de Groot;The Leading Edge,2010

5. Cognitive Interpretation;Henderson;GEO ExPro Magazine, The AAPG/Datapages Combined Publications Database,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3