Least-Squares Multiple Imaging for 3D Surface-Related Multiple Elimination on Land Data

Author:

Li Brandon1,Miorali Mattia1,Mills Keith1,Poole Gordon1

Affiliation:

1. CGG

Abstract

Abstract Shallow reflectors which generate surface related multiples, can deteriorate image quality and hamper amplitude analysis. Typically, in land seismic data, the severe noise level and near-surface complexity make surface multiples difficult to identify and remove. In this paper, we present a least-squares multiple imaging (LSMI) driven de-multiple method which targets short and medium period surface multiples. The process involves inversion for a shallow multiple generating reflectivity, which is then used to drive the multiple modeling. The method allows true amplitude modeling, so minimal adaption is required at the subtraction stage. We demonstrate this method on a high-density land dataset acquired in Algeria. The results show that the multiple generator image gives better near-surface illumination and continuity compared to the conventional primary imaging approach. The strong multiple energy present in the near angle is largely suppressed, leading to less ringing and a more interpretable seismic image. Compared with surface-consistent deconvolution, the proposed de-multiple approach extends the amount of reverberation being attenuated, this is particularly effective on low-frequency multiples.

Publisher

IPTC

Reference6 articles.

1. Practical strategies for data-driven land multiple attenuation;Wang,2013

2. Inverse velocity stacking for multiple elimination;Hampson,1986

3. De-aliased, high-resolution Radon transforms;Herrmann,2000

4. Garceran, K. and Le Meur, D. [2012] Simultaneous joint inversion for surface-consistent amplitude and deconvolution. 74th EAGE Conference and Exhibition, Expanded Abstracts.

5. Pica, A., Poulain, G., David, B., Magesan, M., Baldock, S., Weisser, T., Hugonnet, P. and Herrmann, P. [2005] 3D surface-related multiple modeling, principles and results. 75th Annual International Meeting, SEG, Expanded Abstracts.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3