Characterizing Water Breakthrough Using Analytical Diagnostic Workflow

Author:

Dokhon Waleed1,Alkayadi Fatimah1,Dallag Mohammed2

Affiliation:

1. Saudi Aramco

2. Schlumberger

Abstract

Water management has always been a challenge especially in mature fields. Consequently, mechanical, chemical shutoff and other water reduction techniques have been developed and deployed to curb the menace in the hydrocarbon industry. However, poor diagnostic work can be a leading reason for the low success rate for any water control method. This paper introduces a holistic workflow to understand the candidate selection, filter the wells based on priority and determine the water breakthrough mechanism to eventually select the optimal remedial action. In this paper, 7 wells are selected and prioritized to undergo a workflow to diagnose water breakthrough and characterize it. The first analytical tool is Chan correlation, which incorporates the water-oil ratio for determining the water signature. For determining the water entry zone, Production Logging Tool (PLT) will be used as the second investigative tool. Water source identification plays another major role in assessing whether the water is coming from an aquifer, nearby injector or native reservoir fluid, which can be determined by the frequent sample collection and lab analysis for ionic concentration. These three investigative tools will provide a basis to select the proper water management strategy. The results of the diagnosis have revealed several facts regarding the aforementioned parameters. A number of the diagnosed wells have shown a steep increase in oil-water ratio and oil-water ratio derivative, which hints to a possible nearby thief zone according to Chan correlation. Reviewing the produced water ionic concentration suggests low salinity and that the water's chemistry is closer to that of an injected water than reservoir water. Finally, Production Logging Tool showed multiple water entries in the open hole section. According to the diagnosis, Inflow Control Device deployment for those wells are recommended. Couple of multilateral wells completed with Inflow Control Valves (ICV) showed rapid channeling of water, which can be caused by a thief zone or a lateral dominating the flow and contributing high water cuts. These wells were subjected to ICV optimization and it confirmed that a latera was dominating the flow with high water cut and was optimized. The water cut for those two wells dropped by 58%. The workflow enables engineers to understand the water breakthrough mechanism in a timely-matter, which allows them to categorize the wells based on the different water signatures such as water coning, thief zone, and near wellbore breakthrough. The proposed workflow can be adopted and adjusted based on the water management problems associated to any field in order to find the optimal remedial action. This outcome played a role in the planning of placing and drilling new wells in the field.

Publisher

IPTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3