Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study

Author:

AlJuboori Mustafa1,Hossain Mofazzal1,Al-Fatlawi Omar2,Kabir Akim3,Radhi Abbas4

Affiliation:

1. Curtin University

2. University of Baghdad-Department of Petroleum Engineering

3. Saudi Aramco

4. Missan Oil Company

Abstract

Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize the allocation of the continuous gas-lift injection rate in a network system of a Middle Eastern oil field with 43 gas-lift injected wells through numerical modelling and simulation studies. Reservoir pressure and water cut sensitivity studies are performed to investigate the potential impacts of these parameters on well production performance and production life cycle of the field. Sample economics analysis are exercised to broaden the understanding of potential benefit of the implementation gas lift techniques in the field from both technical and economic viewpoint. In addition, while application of GA is not a new idea, this paper elaborates the GA based optimization techniques for improving the oil production rate by implementing gas lift in a large Middle Eastern oil field. The optimization model is presented step by step, so it can easily be followed, and be used as a guide, especially by frontline production engineers involved in designing and development of gas-lift system towards optimally allocation of gas injection rate to individual well in a network system for a field with limited gas injection rate.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3