Prediction of Pore and Fracture Pressures Using Support Vector Machine

Author:

Ahmed S. Abdulmalek1,Mahmoud Ahmed Abdulhamid1,Elkatatny Salaheldin1,Mahmoud Mohamed1,Abdulraheem Abdulazeez1

Affiliation:

1. King Fahd University of Petroleum & Minerals

Abstract

Abstract Pore and fracture pressures are a critical formation condition that affects efficiency and economy of drilling operations. The knowledge of the pore and fracture pressures is significant to control the well. It will assist in avoiding problems associated with drilling operation and decreasing the cost of drilling operation. It is essential to predict pore and fracture pressures accurately prior to drilling process to prevent various issues for example fluid loss, kicks, fracture the formation, differential pipe sticking, heaving shale and blowouts. Many models are used to estimate the pore and fracture pressures either from log information, drilling parameters or formation strengths. However, these models have some limitations such as some of the models can only be used in clean shales, applicable only for the pressure generated by under-compaction mechanism and some of them are not applicable in unloading formations. Few papers used artificial intelligence (AI) to estimate the pore and fracture pressures. In this work, a real filed data that contain the log data and real time surface drilling parameters were utilized by support vector machine (SVM) to predict the pore and fracture pressures. Support vector machine predicted the pore and fracture pressures with a high accuracy where the coefficient of determination (R2) is greater than 0.995. In addition, it can estimate the pore pressure without the need for pressure trends and predict the fracture pressure from only the real time surface drilling parameters which are easily available.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3