Affiliation:
1. The University of Texas at Austin
2. EP Energy
3. SimTech LLC
Abstract
Abstract
Shale field operators have vested interest in optimal spacing of infill wells and further fracture optimization, which ideally should have as little interference with the existing wells as possible. Although proper modeling has been employed to show the existence of well interference, few models have forecasted the impact of multiple inter-well fractures on child wells production to optimize further hydraulic fracture designs. This study presented a rigorous workflow for estimating the impacts of spatial variations in fracture conductivity and complexity on fracture geometries of inter-well interference. Furthermore, we applied a non-intrusive embedded discrete fracture model (EDFM) method in conjunction with a commercial black oil reservoir simulator to investigate the impact of well interference through connecting fractures by multi-well history matching, based on a robust understanding of fracture properties, real production data and wellbore image logging. First, according to updated production data from Eagle Ford, the model was constructed to perform four (parent) wells history matching including five inner (child) wells. Later, fracture diagnostic results from well image logging were employed to perform sensitivity analysis on properties of long interwell connecting fractures such as number, conductivity, geometry, and explore their impacts on history matching. Finally, optimal cluster spacing was recommended considering interwell interference. The simulation results show that well interference is present and reduces effectiveness of the fracture hits when the connecting fracture conductivity, primary fracture conductivity, and number of connecting fractures increase. Because of these interwell long fractures, the bottomhole pressure behavior of the parent wells tends to equalize. Furthermore, the EDFM application is strongly supported by complex fracture propagation interpretation from image logs through the child wells in the reservoir. Through this study, three possible scenarios are shown with robust history matching of the model considering more than 20 complex dominant long interwell fracture hits and more than 2000 hydraulic fractures.
The model became a valuable stencil to decide the well location and spacing, the completion staging, and to optimize the hydraulic fracture treatment design as well as its sequence so that it can be expanded to other areas of the field. The simulation results were applied to the field successfully to afford significant reductions in offset frac interference by up to 50% and reduce completion costs up to 23% while improving new well capital efficiency.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献