Modeling Interwell Interference Due to Complex Fracture Hits in Eagle Ford Using EDFM

Author:

Fiallos Mauricio Xavier1,Yu Wei1,Ganjdanesh Reza1,Kerr Erich2,Sepehrnoori Kamy1,Miao Jijun3,Ambrose Raymond2

Affiliation:

1. The University of Texas at Austin

2. EP Energy

3. SimTech LLC

Abstract

Abstract Shale field operators have vested interest in optimal spacing of infill wells and further fracture optimization, which ideally should have as little interference with the existing wells as possible. Although proper modeling has been employed to show the existence of well interference, few models have forecasted the impact of multiple inter-well fractures on child wells production to optimize further hydraulic fracture designs. This study presented a rigorous workflow for estimating the impacts of spatial variations in fracture conductivity and complexity on fracture geometries of inter-well interference. Furthermore, we applied a non-intrusive embedded discrete fracture model (EDFM) method in conjunction with a commercial black oil reservoir simulator to investigate the impact of well interference through connecting fractures by multi-well history matching, based on a robust understanding of fracture properties, real production data and wellbore image logging. First, according to updated production data from Eagle Ford, the model was constructed to perform four (parent) wells history matching including five inner (child) wells. Later, fracture diagnostic results from well image logging were employed to perform sensitivity analysis on properties of long interwell connecting fractures such as number, conductivity, geometry, and explore their impacts on history matching. Finally, optimal cluster spacing was recommended considering interwell interference. The simulation results show that well interference is present and reduces effectiveness of the fracture hits when the connecting fracture conductivity, primary fracture conductivity, and number of connecting fractures increase. Because of these interwell long fractures, the bottomhole pressure behavior of the parent wells tends to equalize. Furthermore, the EDFM application is strongly supported by complex fracture propagation interpretation from image logs through the child wells in the reservoir. Through this study, three possible scenarios are shown with robust history matching of the model considering more than 20 complex dominant long interwell fracture hits and more than 2000 hydraulic fractures. The model became a valuable stencil to decide the well location and spacing, the completion staging, and to optimize the hydraulic fracture treatment design as well as its sequence so that it can be expanded to other areas of the field. The simulation results were applied to the field successfully to afford significant reductions in offset frac interference by up to 50% and reduce completion costs up to 23% while improving new well capital efficiency.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3