Drilling Dynamics Measurements on Positive Displacement Motors PDM Enhance Performances and Reliability

Author:

Li Fei1,Neelgund Rohan V.1,Smith David L.1,Blackman Wesley1

Affiliation:

1. Schlumberger

Abstract

Abstract Positive displacement motors (PDMs) have been extensively utilized in the North America unconventional market. PDMs are frequently run with aggressive parameters in challenging drilling environments to increase drilling performance. Because PDMs are typically rental equipment, there is often not much information givento the equipment owners when tools are returned after use. This situation limits the opportunities for failure investigation, preventive maintenance, and tool design optimization. Furthermore, measurement-while-drilling (MWD) tools in PDM bottom hole assemblies (BHAs)only measure dynamics of the drill collars, considerably above the motor, often without sufficient resolution to understand adverse drilling dynamics and to design remedial actions for the operations. A dynamics measurement data recorder was developed and introduced for this type of operation. The data recorder is a small, low-cost, and battery-powered device. It is installed in the rotor catch of a conventional PDM in such a way that no additional component is added to the BHA length. The recorder is fitted with a triaxial vibration accelerometer, a triaxial shock accelerometer, a gyroscope and a temperature sensor. The recorder can log data over a full PDM operation cycle, including shipment, rig-side handling, and downhole operation. The data recorder has been deployed in North American land operations since 2016. One case study is presented, and the data analysis showed that PDM operation cycles were captured from the installation of the recorder in maintenance bases to the return of the tools. Torsional vibrations and stick-slip generated by mudmotors during sliding phases were effectively captured. In several cases, bit dull grade conditions were correlated with recorded drilling dynamics data as part of failure analyses to understand the root cause of the problem.

Publisher

IPTC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3