Successful Application of Co2 Foam Fracturing Enables Paradigm Shift in Stimulation Strategy of North Kuwait Jurassic Depleted Reservoirs

Author:

Abdel Mohamed1,Al-Mefleh SLB Kholoud2,Al-Muhanna Danah2,Fidan Erkan2,Abdul-Samad Zamzam2,Al-Salali Yousef2,Ajayi Ayo3

Affiliation:

1. Basset

2. Kuwait Oil Company

3. Shell

Abstract

Abstract The first ever CO2 foam fracturing new technology in Kuwait Oil Company (KOC) history was executed flawlessly in late 2021. Three treatments were executed. Co2 Foam Fracturing proved its significant added value of improving productivity in deep depleted tight carbonate Jurassic reservoirs, enhance flow back, reduce water consumption and carbon emission, and enable early production plus improving operation efficiency and cost saving. The stimulation operation has proven to be a huge success for all multidisciplinary teams involved as preliminary results showed over 50-70% production increase compared to offset wells. The main challenges of acid fracturing stimulation in depleted reservoirs are the need for extended formation cleanup to flow back the injected fluids via prolonging Nitrogen lift that add higher operational costs and intervention operations. Therefore, energetic high foam efficiency frac fluid becomes essential to assist flowback and retrieve pumped frac fluids from reservoir. To tackle these challenges, Carbon Dioxide CO2 is pumped in liquid phase as energetic fluid together with normal frac fluids. Due to CO2 liquid nature, high foam efficiency can be reached (40 – 50%) at much lower friction losses. So, it enables achieving pumping frac at high rates and high foam efficiency. The main benefits of CO2 Foam frac are better fracture cleanup due to expansion of the stored compressed gas in the liquid CO2, fluid loss control that is provided by foam, minimized fracture conductivity damage, and the increase in hydrostatic pressure while pumping that translates to lower surface pressures during injection. The selected pilot well is in depleted deep tight carbonate reservoir area of North Kuwait Jurassic gas fields. The executed acid fracturing operation required close planning starting from Q1-2021. Many challenges faced from logistical issues, lack of infrastructure and CO2 resources for the multi-faceted operation due to COVID-19 pandemic limitations. These challenges were tackled ahead with the integration of technical and operations teams to bridge the knowledge gap and to enable executing the operation safely. The pilot well’s net incremental production gain is estimated at 50-70% compared to offset wells, with improved flowback and formation cleanup with less well intervention. The resulting time and cost savings as well as the incremental well productivity and better operation efficiency confirmed high perspectives for the implemented foam acid fracturing approach. Another two CO2 Foam acid fracturing wells were executed with good results too. This paper will demonstrate the value of CO2 foam fracturing in depleted reservoir and KOC experience post first application and its plans to expand CO2 Foam Fracturing application across KOC different fields.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3