Pore Scale Modeling and Its Advantage for Enhanced Oil Recovery of Near Miscible Three-Phase Flow WAG Flooding in Carbonate Reservoir

Author:

Gibrata Muhammad Antonia1,Van Dijke Rink2,Geiger Sebastian2

Affiliation:

1. ADCO

2. Heriot-Watt U.

Abstract

Abstract Pore Scale modeling in carbonate reservoir is challenging and important for getting an accurate reservoir characterization, enhanced oil recovery (EOR) and reservoir management. In this case, 3D pore-scale modeling for immiscible and near miscible three phase flow in gas and water alternating gas (WAG) flooding of carbonate reservoir. It is useful to predict and guide SCAL based to access effects on pore-scale and EOR of field scale. A Research has been started in carbonate reservoir with water alternating gas (WAG) injection activity which has various heterogeneity conditions such as: porosity, permeability, relative permeability, cementation, saturation exponent, rock types, fluid types/contacts, interfacial tension, wettability and capillary pressure. Inaccurate to characterize and model of these reservoir properties and fluid will lead to give high uncertainty of reservoir characterization, minimum oil recovery and reservoir management concern. The reliable pore-scale modeling approach is needed by the data integration of various sources such as those from petrophysical, reservoir, geology and geophysical data. Research and utilize of X-ray CT in micro and nano to capture the 3D network structure of representative reservoir rock properties. In prediction and guide SCAL based; investigation the effects (sensitivity) of interfacial tensions, contact angles, wettability and spreading coefficient into miscibility on the oil layers between gas and water in a fully interconnected three-phase flow pore-network model. Utilize thermodynamic criteria for rock properties and oil layers, which affect the oil relative permeability at low oil saturation for accurate prediction of residual oil and maximize oil recovery. In 3D Pore scale modeling workflow; validation with SCAL-lab, up scaling to well logs and field with utilizing logs, formation pressure/sampling/testing and combination with structural data of geology-seismic are necessary in field scale modeling approach. It will provide reliable rock type/properties for a reservoir dynamic model. The special approach needs to be developed and used in simulation model for getting appropriate relative-permeability, rock type/properties and water saturation in Gas and Water Alternating Gas (WAG) flooding of carbonate reservoirs. Thus it can give an accurate and robust of reservoir characterization, maximize oil recovery and reservoir management.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3