Exploration and Practice of Methane-Leading Reservoir Stimulation Technology of High-Rank Coalbed Methane

Author:

Zhu Qingzhong1,Yang Yanhui2,Chen Longwei2,Wang Yuting2,Chen Biwu3,Liu Chunli2,Zhang Chen2,Wang Xiaoxuan2

Affiliation:

1. PetroChina Huabei Oilfield Company

2. Exploration and Development Research Institute of PetroChina Huabei Oilfield Company

3. CBM Exploration and Development Division, PetroChina Huabei Oilfield Company

Abstract

Abstract In order to solve the problems of poor adaptability of reservoir stimulation technology and low gas production of single well in high-rank coalbed methane (CBM) reservoir, a new concept of "methane-leading" reservoir stimulation technology and the corresponding technology method system are put forward. The concept of "methane-leading" reservoir stimulation technology emphasizes the complexity of the coal reservoir and the energy releasing process in the coalbed methane development. Through targeted artificial stimulation, a multi-stage interconnected fracture network system is built to reduce seepage resistance and finally improve the gas production of single well. The characteristics of coal reservoir and problems of traditional stimulation technology are analyzed in this paper. And the "methane-leading" reservoir stimulation technology focus on the optimization of the "sweet section", the release of injected energy and the expansion of area stimulated by the fracture network. The application results in the CBM field in the south of Qinshui basin, Shanxi Province, China, shows that the gas production of a single vertical well is more than twice that of an old well in the same area, reaching 2500~3000 m3/d and the average gas production per horizontal well is over 10000 m3/d, indicating a good application prospect. The innovation of this paper lies in that a new concept of "methane-leading" reservoir stimulation technology and the corresponding technology method with CBM characteristics are put forward. It provides new ideas and methods for effectively improving the gas production capacity of CBM single well, realizing efficient development of high-rank CBM and promoting the healthy development of CBM industry.

Publisher

IPTC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3