Yanbei-Unlocking the Tight Gas Green Field Development Potential Through Integrated Technology Application

Author:

Zaini Muhamad Zaki1,Du Kuifu1,Zhu Ming1,Feng Li Jun1,Yang Hai Hua1,Wei Lin1,Liu Yi1

Affiliation:

1. Schlumberger

Abstract

Abstract Yanbei Project is a tight unconventional gas development that covers a vast area of 2,341 km2 in the Ordos basin – the largest gas producing basin in China. The paper outlines the innovative technologies applied, major achievements and the integrated approach used to successfully develop this large-scale gas greenfield of highly heterogeneous fluvial thin sands with very complicated surface terrains and resources overlaying issues (coal mines and water reservoirs). The project scope calls for drilling and fracturing 784 wells in the full field development in two phases. Phase 1 includes construction of 7 hubs, central processing facilities (CPF), and 360 km of pipelines on a complex hilly topography and aims to deliver production of 1.4 bcm/year. Phase 2 will ramp up to a higher rate. The horizontal well with multi-stage fracture development concept was introduced for the first time in the project and has significantly improved both single well productivity and project economics. More than 20 different technologies, ranging from subsurface, drilling, logging, completion, stimulation, production and facilities, have been applied each of which has been carefully assessed to ensure its value to the project. The advanced 2D seismic technologies have enabled the project to successfully reprocess and interpret a complicated 2D seismic dataset that is heavily distorted by the hilly terrains. The integration of the 2D seismic interpretation with a variety of subsurface and drilling datasets have enhanced the understanding of reservoir characterization and sandbody architectures hence significantly reduce geological risks in drilling horizontal wells in such a complex fluvial system. The drilling and surface engineering work have dealt with a variety of different challenges such as well pad acquisitions, conflicting with coal mines & surface water reservoir areas along with local community issues. One of the key success factors for the project is the integration of the industry's worldwide expertise of technologies, procedures and HSE standards coupled with the local experience, which has ensured an innovative and fit-for-purpose technology-driven solution in planning and execution of the project. The paper describes the main geological and engineering challenges and outlines an integrated approach in applying extensive but selected technologies to resolve those challenges.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3