Fracture Characterization by Integrating Seismic-Derived Attributes including Anisotropy and Diffraction Imaging with Borehole Fracture Data in an Offshore Carbonate Field, United Arab Emirates

Author:

Liu Enru1,Johns Mary1,Zelewski Gregg1,Burnett William A.1,Wu Xianyun1,Zhang Jie1,Molyneux Joe2,Skeith Gene3,Obara Tomohiro3,El-Awawdeh Raed3,Sultan Akmal3,Al Messabi Abdulrahman3

Affiliation:

1. ExxonMobil Upstream Research Co

2. Formerly ExxonMobil Upstream Research Co. and now in ExxonMobil Canada East

3. Zakum Development Co

Abstract

Abstract In this paper, we present a case study of fracture characterization by integrating borehole data with a variety of seismic attributes in a carbonate reservoir from a giant offshore field, United Arab Emirates. The objectives are to determine to what extent seismic data may be confidently used for mapping spatial distributions of subtle faults and fracture corridors in the reservoirs and to better understand the distribution of overburden anomalies (karsts, high impedance channels) for field development planning. Borehole data used in our study include information from core descriptions (fracture density and orientations), image logs, cross-dipole shear-wave anisotropy analysis, and dynamic data (well testing, PLT, tracer, and mud-loss). The seismic attributes include standard and advanced post-stack geometrical attributes; pre-stack seismic azimuthal AVO attributes, and recently developed pre-stack diffraction imaging. We find that there are common features that can be identified in different attributes, and the differences may indicate different scales of fractures. We also observe a qualitative correlation in the area of history match challenges and high anisotropy magnitude, where seismic anisotropy can identify relatively high fracture intensity regions/zones instead of pinpointing individual fractures and complements other attributes as differences do exist between seismically identified fracture zones and well data due to overburden anisotropy, resolution and sampling issues (which are addressed using the synthetic modeling approach). Diffraction attributes have revealed more detailed geological features in overburden (e.g. karsts) and reservoirs (e.g. lineaments) than in reflection data and a comparison with mud loss data in the shallow zones looks promising with a good correlation between mud loss and collapsed features. This work has provided an improved understanding of the applicability of the using multi-seismic attributes for fracture characterizations in carbonate reservoirs.

Publisher

IPTC

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3