Elastic time-reverse modeling imaging conditions

Author:

Artman Brad1

Affiliation:

1. Spectraseis AG

Abstract

Abstract Since the Earth is elastic, it is worth the computational burden to process multicomponent data for elastic phenomena with fully coupled time-domain wave-equation propagators. At every time sample in the back-propagated model domain, the complete wave field is decomposed exactly into compressional and shear wave components by simple spatial derivatives. Then, physically significant images are extracted from extrapolated hyper-cubes by applying appropriate imaging conditions. To locate subsurface sources (or diffractors) with the time-reverse modeling algorithm, the imaging condition required is the correlation of P and S energy since only at the source location are the two events collocated. The impulse response of the algorithm is anti-symmetric in physical space and can be enhanced through post-processing with a spatial derivative or integral. Source Focusing The time-reverse modeling (TRM) algorithm was developed for locating sources within a model domain (Fink, 1999; Gajewski and Tessmer, 2005). The method is suited for locating earthquakes, microseismic events, or tremor sources. The difference between TRM and reverse-time migration (RTM) (Levin, 1984) is the lack of a known source wave field for TRM. Otherwise, data are treated in the same manner: reversed in time and used as source functions at the acquisition locations. The difference between a specular reflection and a stimulated heterogeneity, or diffractor, is that data contain only a direct arrival ray path: The "from-path". This contrasts to reflection seismic whose time delays are the sum of the "to-path" and the "from-path." Without some knowledge of the to-path, imaging algorithms based on delays between a reference event and a scattering event, including RTM and interferometry, are incapable of finding sources within a domain. In contrast, the TRM algorithm exploits the ability to collapse travel-time surfaces (hyperbolic cones) using wave-equation propagators.

Publisher

IPTC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust 3D scalar imaging condition for elastic RTM;SEG Technical Program Expanded Abstracts 2017;2017-08-17

2. Elastic least-squares reverse time migration;SEG Technical Program Expanded Abstracts 2016;2016-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3