How In-Place Volumes of Subsurface Reservoir Models are Impacted by Using 3d High-Resolution Outcrop Analogue Data. A Case Study Using Depositional Architectural Heterogeneity of Stromatoporoid/Coral Buildups of the Hanifa Fm, Saudi Arabia

Author:

Ramdani Ahmad1,Khanna Pankaj1,de Jong Sander2,Gairola Gaurav1,Vahrenkamp Volker1

Affiliation:

1. King Abdullah University of Science and Technology

2. Baker Hughes

Abstract

Abstract High porosity-high permeability stromatoporoid/coral facies are important components of the Late Jurassic carbonate reservoirs in the Middle East. This facies exhibits sub-seismic depositional heterogeneities that subsurface models often overlook due to the limited interwell resolution of subsurface data. Understanding the effect of this facies on the 3D distribution of static reservoir properties and uncertainty in volumetric calculations of hydrocarbons in-place will improve estimates of the ultimate recovery and hence reservoir development decisions. A 3D high-fidelity outcrop-based geocellular depositional model that honors the spatial and petrophysical heterogeneity of the stromatoporoid/coral facies was constructed based on the Hanifa reservoir outcrop analog in central Saudi Arabia. The model was constructed from a 1.2 km × 1 km drone photogrammetry survey, measured sections (total length 150m) and spectral gamma-ray data, >200 thin sections, a 50 m-long core, a 19 km-long network of 2D and 3D Ground Penetrating Radar, and 600 m-long 2D seismic profiles. The facies model was populated with porosity and permeability equivalent to subsurface reservoir facies and utilized as the baseline petrophysical model for the comparison study. A set of pseudo wells at ~1 km spacing were simulated from the model capturing the model's 1D facies stacking and properties around the wellbore. The pseudo wells were utilized to stochastically build facies and static reservoir models scenarios to replicate the baseline model from limited well data. The volumetric calculation of each realization is compared with the baseline to investigate the range of volumetric uncertainty that would be introduced by the lateral distribution of stromatoporoid/coral facies. Early results show that depending upon the modeling methodology, the volumetric discrepancy between stochastic simulations and the deterministic outcrop baseline model is ~10-15%. Using a high-fidelity outcrop-based reservoir model, we have demonstrated the strong influence of 3D depositional heterogeneity of the stromatoporoid/coral facies on the uncertainty associated with hydrocarbon in-place volumes. We conclude that a static reservoir model can be significantly improved by using data-driven geological models that reflect the 3D heterogeneity of depositional facies.

Publisher

IPTC

Reference22 articles.

1. Ghawar: The Anatomy of the World's Largest Oil Field;Afifi;AAPG Distinguished Lecture 2004,2004

2. The impact of data integration on geostatistical porosity modelling: A case study from the Berri Field, Saudi Arabia;Al-Khalifah;Journal of Petroleum Geology,2002

3. High-resolution sedimentology and sequence stratigraphy of the Oxfordian-Kimmeridgian, Hanifa, Jubaila and Arab outcrops along Jabal Tuwaiq, Central Saudi Arabia;Al-Mojel;Journal of African Earth Sciences,2020

4. A sequential indicator simulation program for categorical variables with point and block data: BlockSIS;Deutsch;Computers & Geosciences,2006

5. Classification of Carbonate Rocks According to Depositional Texture;Dunham,1962

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3