Robust Chemical Dissolver for Reservoir Stimulation and Formation Damage Remediation

Author:

Panuganti Sai Ravindra1,Misra Sanjay1,Salleh Intan Khalida1,M. Ibrahim Jamal Mohamad1,Rodzali Mohamad Azmeer1

Affiliation:

1. Petroliam Nasional Berhad PETRONAS

Abstract

The process of matrix acidizing, despite being one of the oldest operations in the petroleum industry, is still a challenge for tight carbonate reservoirs. This project considers the development of a multi-functional environment friendly chemical, for reservoir stimulation and formation damage remediation. A microemulsion solution of biodegradable chelating agent is formulated, which is effective for tight carbonate reservoir stimulation even at high temperature. Together with the chelate based inorganic dissolver, aromatic naphtha as an organic dissolver is the other main active ingredient in the proposed microemulsion formulation. For this reason, the microemulsion solution can also be used to treat inorganic and organic mixed deposits which can involve in formation damage. The developed multi-application chemical is later tested for compatibility with reservoir fluids and production chemicals encountered during well flow back. Formulations with low reactivity are required when the injection of stimulant is not possible at high rate. By making microemulsion with chelate, the reactivity and diffusivity of the chelating agent can be controlled further. Core flooding experiments on core samples from high pressure, high temperature and tight carbonate formation, are conducted to demonstrate wormhole formation during the matrix acidizing treatment with the formulated microemulsion. The synthesized stable microemulsion chemical is also subjected for detailed dissolution study on deep wellbore deposits of different composition from different fields. These inorganic and organic mixed deposits are otherwise hard to be remediated by aqueous or organic solvent alone. The novelty of this article is in developing a chelate based microemulsion as the main stimulation fluid. Another uniqueness of the microemulsion solution is in the treatment of formation damage causing deposit species which are mixed in nature, without the need of any additives.

Publisher

IPTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3