Analysis on the Impact of Fracturing Treatment Design and Reservoir Properties on Production from Shale Gas Reservoirs

Author:

Cohen C.E.1,Abad C.1,Weng X.1,England K.1,Phatak A.1,Kresse O.1,Nevvonen O.1,Laffite V.1,Abivin P.1

Affiliation:

1. Schlumberger

Abstract

Abstract Production from shale gas reservoirs depends greatly on the efficiency of hydraulic fracturing treatments. The cumulated experience in the industry has led to several best practices in treatment design, which have improved productivity of these reservoirs. However, further advancement of treatment design requires a deeper understanding of the complex physics involved in both hydraulic fracturing and production, such as stress shadow, proppant placement and treatment interaction with pre-existing natural fractures. This paper sheds light on the non-linear physics involved in the production of shale gas reservoirs by improving the understanding of the complex relation between gas production, the reservoir properties, and several treatment design parameters. A fracturing-to-production simulation workflow integrating the Unconventional Fracture Model (Weng et al., 2011), with the Unconventional Production Model (Cohen et al., 2012) is presented. By applying this workflow to a realistic reservoir, we did an extensive parametric study to investigate the relation between production and treatment design parameters such as fracturing fluid viscosity, proppant size, proppant concentration, proppant injection order, treatment volume, pumping rate, pad size and hybrid treatment. The paper also evaluates the influence of unconventional reservoir properties - such as permeability, horizontal stress, horizontal stress anisotropy, horizontal stress orientation, Poisson's ratio and Young's modulus - on production. Since this paper focuses on fluid and proppant selection, our methodology was to run 28 simulations to cover the 2D parametric space of proppant size and fracturing fluid viscosity for all of these parameters. More than fourteen hundred simulations were run in this parametric study and the results provide guidelines for optimized treatment design. This paper illustrates how this unique workflow can identifies the optimum fluid and proppant selection that gives the maximum production for a given reservoir and completion. In addition, the parametric study shows how these optimums evolve as a function of reservoir and treatment parameters. The results validate several best practices in treatment design for shale. For example, combination of different sizes of proppant optimizes production by maximizing initial production and slowing down production decline. Simulations also confirm the best practice of injecting the smallest proppant first. The study explains why slickwater treatments should be injected at maximum pumping rate and preferably with 40/70 mesh sand. It also illustrates why reservoirs with high Young's modulus (such as the Barnett shale) can be stimulated effectively with slickwater. Another key finding is that the optimum fluid viscosity increases with treatment volume.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3