Investigating the Effects of Permeability and Porosity Variations on Formation Breakdown Pressures Using a New Hybrid Analytical and Computational Approach

Author:

Almani Tameem1,Khan Khaqan1,Altwaijri Mohammad1

Affiliation:

1. Saudi Aramco

Abstract

Abstract In hydraulic fracturing, the borehole pressure at which fractures initiate is called the breakdown pressure. In-situ stress tests, such as injectivity tests, can be used to determine the formation breakdown pressure. Through these tests, borehole pressure versus time curves are generated, and the breakdown pressure is considered as the peak pressure at which the intact formation at the borehole wall is broken in tension (Ito and Hayashi 1991; Ito 2008). Estimating this value correctly is very crucial from an operational point of view, as the required horsepower on site and the pressure rating of well completions are all based on that. Operational failure can result from underestimating the breakdown pressure, and expenditure loss can result from overestimating it. Therefore, an accurate estimation of the breakdown pressure is a huge step toward achieving a successful hydraulic fracturing operation. Several methods and approaches for estimating the breakdown pressure exist in literature. Most of these methods do not include all the underlying physical parameters involved such as poroelastic stresses, and formation permeability. In general, breakdown pressure prediction algorithms can be grouped in two main categories: experimental and analytical based methods, and computational based methods. Experimental and analytical based methods use experimental correlations together with simplified derived analytical solutions to estimate the formation breakdown pressure (Ito and Hayashi 1991; Ito 2008; Schmitt and Zoback, 1989; Haimson and Fairhurst, 1969). In contrast, computational based methods employ numerical simulations of coupled geomechanical and flow models to compute the underlying stress and pressure fields (Almani, 2016; Almani et al., 2017 (1,2), Borregales et al., 2018; Dana et al., 2018; Kim et al., 2009; Castelletto et al., 2015; Kim et al., 2011; and Jha and Juanes, 2014). The computed pressure and stress fields are then used to estimate formation breakdown pressures (Fatahi et al., 2016). In this work, we will combine these two approaches, and we will derive and implement a new hybrid analytical and computational algorithm to compute formation breakdown pressure as a function of all the underlying physical parameters involved, and in particular rock porosity and permeability. The developed algorithm can be used for several purposes including studying the effects of rock porosity and permeability on the breakdown pressure values. As stated earlier, in this paper, a new hybrid algorithm for estimating formation breakdown pressure as a function of all the underlying physical parameters involved will be introduced (Almani et al., 2021). This algorithm differs from previously published approaches in the fact that it does not incorporate any empirical parameters, and instead computes the breakdown pressure as a function of in-situ stresses, pore pressure and poro-elastic stresses. The pore pressure and poroelastic stresses are computed by a novel hybrid analytical and numerical approach, incorporating the rock porosity and permeability, the Biot poroelastic parameter α, the Poisson's ratio, the fracturing fluid viscosity and compressibility, the initial wellbore pressure, and the wellbore radius. Combining in-situ stresses into the model results in a comprehensive and accurate framework for estimating the breakdown pressure, as a direct function of all the underlying physical parameters, including rock porosity and permeability.

Publisher

IPTC

Reference22 articles.

1. Convergence analysis of single rate and multirate fixed stress split iterative coupling schemes in heterogeneous poroelastic media;Almani,2017

2. Almani, T., S.Lee, T.Wick, and M. F.Wheeler. 2017. Multirate coupling for flow and geomechanics applied to hydraulic fracturing using an adaptive phase field technique. The SPE Reservoir Simulation Conference. SPE-182610-MS.

3. Almani, T. 2016. Efficient algorithms for flow models coupled with geomechanics for porous media applications. PhD thesis, The University of Texas at Austin, Austin, Texas.

4. Almani, T., K.Khan & M.Altwaijri. 2021. A New Computational Framework for Predicting Formation Breakdown Pressure in Hydraulic Fracturing Operations. ARMA/DGS/SEG International Geomechanics Symposium, Al-Khobar, Saudi Arabia.

5. Bodaghia, M., P.Goncalves, and N.C.Correia. 2014. A quantitative evaluation of the uncertainty of permeability measurements in constant thickness fibre reinforcements (RTM). ECCM16 – 16th European Conference On Composite Materials, Seville, Spain, 22-26 June 2014.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3