Analysis of Circulating Pressure and Temperature using Drilling Microchips

Author:

Li Bodong1,Zhan Guodong1,Okot Michael1,Dokhani Vahid2

Affiliation:

1. Saudi Aramco

2. Yu Technologies

Abstract

AbstractAccurate knowledge of circulating pressure and temperature is essential for making critical decisions while drilling operation. Through implementation of miniaturized semiconductor technology, we obtained near real-time dynamic pressure and temperature profile of the wellbore, making previously simulated critical operational data such as equivalent circulation density (ECD) and wellbore thermal distribution now measurable using drilling microchip. The application of drilling microchips to collect distributed pressure and temperature data while drilling is investigated, where each microchip measures both pressure and temperature simultaneously. This study also presents a revised method to calibrate measurements of drilling microchip with depth.Four field trials were attempted in a slightly inclined well using water-based or oil-based muds, where 10 drilling microchips were deployed in each trial. The recovered data from the drilling microchips are first downloaded and compiled. An in-house software is developed to process and convert time-scale of each drilling microchip to depth considering slippage of drilling microchips in drill string and annulus. An iterative algorithm is designed to calibrate the predicted arrival time with the actual arrival time of each tracer, which ultimately yields the true velocity of tracers in flow conduits. The maximum measured pressure is used as an indicator to locate each tracer at the bottom hole. It is realized that a plateau of pressure versus time can signify a trapped tracer in the flow path if the pump rate was maintained constant.The results of field trials show that some of the tracers were trapped for few minutes in the lower section of annular space or before the bit nozzle. The results of temperature profiles conclude a unique pattern for almost all of the deployed drilling microchips. However, the results of pressure profiles can be classified in two different groups as drilling microchips could have moved in different batches while pumping. The calculated temperature gradients show a heating zone near the bottom hole and continuous cooling of drilling fluid as tracers move toward the surface. The average pressure gradient is in the range of 0.52 – 0.61 psi/ft among different trials. It is shown that the velocity of tracers in each interval strongly depends on the flow regime.To our best knowledge, a combined measurement of circulating temperature and pressure using drilling microchips for the first-time is successfully conducted in these field trials. The results can be used for calculation of ECD and temperature profiles, which provide near real-time downhole data for monitoring and diagnostic applications. The measured pressure data also provide new insights about tracking of drilling microchips in the wellbore.

Publisher

IPTC

Reference20 articles.

1. Buzi, E., Seren, H.R., Deffenbaugh, M., Turner, R., and Ssafwany, A., 2020. Sensor ball: an autonomous untethered logging platform. OTC-30538, in Proc. Offshore Technology Conference in Houston, TX, USA, 4-7 May.

2. Non-Newtonian flow in the process industries: fundamentals and engineering applications;Chhabra,1999

3. Annular velocity for rotary drilling operations;Chien,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3