Advanced Modeling and Sensitivity Analysis for Downhole Wet Gas Compressor Applications.

Author:

Lastra Rafael1,Montoya Cesar2,Aladawy Ahmed2,Malkawi Ameen2

Affiliation:

1. Saudi Aramco

2. Baker Hughes, a GE Company

Abstract

Downhole gas compression (DHGC) in gas wells is a relatively new concept in production engineering, but it represents one of the most promising technologies to revive dead wells, to boost gas production and to maximize total gas production recovery. This technology could be analogous to electrical submersible pumps (ESPs) for oil wells, as it increases well production by reducing the back pressure at the wellbore sand face; this is achieved by providing boosting pressure to cover for outflow pressure requirements (i.e. tubing losses and well head backpressure). However, downhole wet gas compression applications are considerably more challenging than those for ESPs. The purpose of this paper is to describe step by step the procedures and workflows to evaluate downhole gas compression applications, from information preparation, to multiphase flow calculations and sensitivity analyses. The applications of this technology are more complex than conventional pumping methods for oil wells. Calculations are more involved with considerations for gas compressibility, multiple flow regimes, liquid volume fraction at compressor intake, compressor pressure ratio requirements, liquid loading conditions, discharge pressure and discharge temperature, among other effects, which are some of the main factors to be measured for this type of application. There is no standard methodology in the oil industry for gas well modeling and sensitivity analysis for DHGC applications. Just few publications can be found in the literature with some description of the evaluation process but missing some other relevant aspects of the application. This paper presents a systematic process to evaluate applications of DHGC including well performance modeling and compressor simulations. A new comprehensive methodology has been used for downhole compression application in this study, using nodal analysis software for well performance modeling in combination with a process system simulator to model compressor performance.

Publisher

IPTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-parameter Optimization for Downhole Gas Compression System;Springer Series in Geomechanics and Geoengineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3