Demonstrating the Performance of a Multi-Tubular Corrosion Inspection Tool in Alloyed Completions

Author:

Fouda Ahmed1,Dai Junwen1

Affiliation:

1. Halliburton

Abstract

Abstract With the increased demand for drilling deeper wells in harsh environments involving corrosive, briny waters and more corrosive crudes, completion engineers increasingly adopt more resilient materials for well casings than conventional carbon steel. These materials include alloyed steels, where ferrous steel is mixed with other non-ferrous materials, such as chromium and nickel, for increased strength and durability. Alloyed steel has a lower magnetic permeability than carbon steel and, therefore, generates weaker electromagnetic signatures when logged with electromagnetic pipe inspection tools. This paper demonstrates the performance of an array multi-frequency electromagnetic pipe inspection tool in scenarios involving alloyed completions using a simulated mockup test with known defects. The types of defects considered are circumferential with different combinations of overlapping and non-overlapping defects on well casings. The pipe inspection tool uses the eddy current principle and includes two transmitters and eight receivers. It operates in continuous wave mode at multiple frequencies. Optimized transmitter-receiver spacing configurations and multi-frequency operation provide sufficiently diverse information to help assess metal loss in individual pipes for a wide range of configurations, including those with alloyed completions. The tool uses a sophisticated workflow of data-processing and inversion algorithms to decouple individual thickness information from the measured data. A mockup test was designed to replicate typical alloyed completions used in deep water wells to assess tool performance in different scenarios. The mockup comprises an alloyed tubing and two outer casings, which are standard ferromagnetic steel pipes, with seven combinations of defects on the casings. The tool response is synthetically simulated using a finite element electromagnetic solver and the synthetic data are inverted for metal loss on each one of the pipes. The estimated metal loss for each defect was compared to the actual metal loss to assess the accuracy of the tool. It will be shown that in order to obtain high accuracy of metal loss estimation, the electromagnetic material properties of the pipes, including that of the alloyed tubing, must be estimated with sufficient accuracy. The information provided by this tool will enable regular inspection of deepwater wells for corrosion and other integrity issues with minimal downtime and intervention cost.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3