Affiliation:
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University
Abstract
Abstract
Hydraulic fracturing technology provides a guarantee for effective production increase and economic exploitation of shale gas wells reservoirs. Propped fractures formed in the formation after fracturing are the key channels for shale gas production. Accurate evaluation of local propped fracture conductivity is of great significance to the effective development of shale gas. Due to the complex lithology and well-developed bedding of shale, the fracture surface morphology after fracturing is rougher than that of sandstone. This roughness will affect the placement of the proppant in the fracture and thus affect the conductivity. At present, fracture conductivity tests in laboratories are generally based on the standard/modified API/ISO method, ignoring the influence of fracture surface roughness. The inability to obtain the rock samples with the same rough morphology to carry out conductivity testing has always been a predicament in the experimental study on propped fracture conductivity. Herein, we propose a new method to reproduce the original fracture surface, and conductivity test samples with uniform surface morphology, consistent mechanical properties were produced. Then, we have carried out experimental research on shale-propped fracture conductivity. The results show that the fracture surfaces produced by the new method are basically the same as the original fracture surfaces, which fully meet the requirements of the conductivity test. The propped fracture conductivity is affected by proppant properties and fracture surface, especially at low proppant concentration. And increasing proppant concentration will help increase the predictability of conductivity. Due to the influence of the roughness of the fracture surface, there may be an optimal proppant concentration under a certain closure pressure.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献