Affiliation:
1. Petronas Carigali Sdn Bhd
Abstract
AbstractWell#1 was completed as horizontal oil producer with Openhole Stand-Alone Sandscreens (OHSAS) across a thin reservoir with average thickness of 20ft in Field B. The first Autonomous Inflow Control Device (AICD) in PETRONAS was installed to ensure balanced contribution across horizontal zones with permeability contrasts and to prevent early water and gas breakthrough. Integrated real-time reservoir mapping-while-drilling technology for well placement optimization combined with industry-leading inflow control simulator for AICD placement were opted. The early well tests post drilling showed promising results with production rate doubled the expected rate with no sand production, low water cut and lower Gas to Oil Ratio (GOR).Reservoir Management Plan (RMP) for this oil rim requires continuous gas injection into gas cap and water injection into aquifer. However, due to low gas injection uptime caused by prolonged injection facilities constraints, the well's watercut continued to increase steadily from 0% to 80% within a year of production despite prudent surveillance and controlling of production during injector's downtime. After the gas injection performance has improved, the well was beaned up as part of oil rim management for withdrawal balancing. Unfortunately, a month later, the production rate showed a sudden spike with significantly low wellhead pressure, followed by hairline leak on its choke valve and leak at Crude Oil Transfer Pump (COTP) recycle line. Sand analysis by particle size distribution (PSD) confirmed OHSAS failure, while the high gas rate from well test results confirmed AICD failure.A multidisciplinary investigation team was immediately formed to determine the root cause of the failure event. Root Cause Failure Analysis (RCFA) method was opted to determine the causes of failures, including the reanalyzing of the OHSAS and AICD completion design. The well operating strategy was also reviewed thoroughly by utilizing the well parameters trending provided in the Exceptional Based Surveillance (EBS) Process Information (PI) ProcessBook.Thorough RCFA concluded that frequent platform interruptions and improper well start-up practices have created abrupt pressure changes in the wellbore, which has likely destabilized the natural sand pack around the OHSAS and created frequent burst of sand influx across AICDs. The operating of a high gas-oil ratio (GOR) and high watercut sand prone well without pre-determined AICD sand erosion toleration envelope have also likely contributed to the failure of AICDs. The delay in detection of OHSAS failure in Well#1 due to ineffective sand monitoring method thus resulted in severe sand production which caused severe leak at its choke valve and COTP recycle line.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献