Detecting the Ripeness of Harvest-Ready Dragon Fruit using Smaller VGGNet-Like Network

Author:

Wismadi I Made,Khrisne Duman Care,Suyadnya I Made Arsa

Abstract

This study has a purpose to develop an application to detect the ripeness of the dragon fruit with the deep learning approach using the Smaller VGGNet-like Network method. In this study, the dragon fruit are classified into two classes: ripe or ready for harvest and still raw, by using the Convolutional Neural Network (CNN). The training process utilize the hard packages in python with the backend tensorflow. The model in this research is tested using the confusion matrix and ROC method with the condition that 100 new data are tested. Based on the test conducted, the level of accuracy in classifying the ripeness of the dragon fruit is 91%, and the test using 20 epoch, 50 epoch, 100 epoch, and 500 epoch produced an AUROC value of 0,95.

Publisher

Universitas Udayana

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning Approach for Multiclass Orange Disease Classification;2024 2nd International Conference on Disruptive Technologies (ICDT);2024-03-15

2. Fruitful Fusion: An Accuracy-Boosting Ensemble of VGG19 and Convolutional Neural Networks for Dragon Fruit Classification;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

3. The Future of Crop Health: CNN-Based Smut Disease Detection in Sugarcane;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

4. Enhancing Crop Health: CNN-SVM Fusion for Sugarcane Leaf Disease Analysis;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

5. Evolving Agritech: Implementing Federated Learning & CNN for Parsley Leaf Disease Detection;2023 3rd Asian Conference on Innovation in Technology (ASIANCON);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3