Establishment of a core collection of Cynodon based on morphological data

Author:

Huang C.Q.,Long T.,Bai C.J.,Wang W.Q.,Tang J.,Liu G.D.

Abstract

In a field plot study conducted in Danzhou, Hainan province, China, a total of 537 wild Cynodon accessions from 22 countries and classified into 11 groups according to taxonomy and origin, were characterized in terms of 11 phenotypic traits in order to construct a core collection. For this, the optimal strategy was developed by screening within the following method levels: (i) 7 sampling proportions (5, 10, 15, 20, 25, 30 and 35%); (ii) 3 sampling methods (preferential sampling, deviation sampling and random sampling); (iii) 5 clustering methods [single linkage, completed linkage, median linkage, unweighted pair-group average (UPGMA) and Ward’s method]; (iv) 3 genetic distances (Euclidean distance, Mahalanobis distance and principal component distance); and (v) 3 sampling proportions within groups (simple, logarithmic and square root proportions). Mean difference percentage, variance difference percentage, coincidence rate of range and variation coefficient changing rate were the criteria adopted for evaluating how well the core collection represented the original collection. The correlation between the original and core collections was determined for comparison. The core collections were validated with the sample distribution diagram of the main components. Results showed that the optimal sampling method for constructing a Cynodon core collection was preferential sampling, the optimal sampling proportion being 20%. The optimal sampling proportion within groups was the square root proportion, the optimal genetic distance was Mahalanobis distance and the optimal clustering method was UPGMA. The proposed core collection of Cynodon is composed of 108 accessions; it was constructed following the optimal sampling strategy identified and retained the original collection´s phenotypic diversity, phenotypic trait correlations and phenotypic group structure. Thus, this collection could be considered a representative sample of the entire resource.

Publisher

Centro Internacional de Agricultura Tropical

Subject

Plant Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3