Microcirculatory effects of systemic metabolic correction with reactive oxygen species: An experimental study

Author:

Martusevich Andrew K.ORCID,Karuzin Konstantin A.,Dilenyan Levon R.ORCID,Peretyagin Sergey P.ORCID

Abstract

Introduction: The purpose of this study is to estimate microcirculation changes under systemic (intraperitoneal) administration of ozonized saline. Methods: For this study, we formed four equal groups of Wistar male rats (n = 10 per group). Rats of first (control) group was intraperitoneally injected with non-ozonized sterile saline solution (daily administration volume — 1 ml.) during 30 days. Animals of other groups (n = 10 for second, third and fourth groups) received 30 intraperitoneal infusions (1 ml/day) daily with ozonized saline solution (saturating ozone concentration for indicated groups — 3000, 10000 and 40000 mcg/l, ozone dose per procedure — 0.75, 2.5 and 10 mcg, respectively). Technology of the Laser Doppler Flowmetry (LDF) along with ``LAKK-02'' device (Moscow, Russia) was used for complex estimation of skin microcirculation state. This technology allows us to study blood flow intensity in skin microvessels at the first and thirty-first days of the experiment. We also can estimate regulatory mechanisms of microcirculation support and the presence of shunt paths of the microcirculation. Results: We studied the dose-dependent response of microcirculation on ozone infusions in chronic experiments. We found that long-lasting course (30 procedures) of intraperitoneal administration of ozonized sodium chloride solution provides an increase in the level of microcirculation index compared to that of the control (injections of nonozonized saline solution), regardless of the applied dose of ozone. At the same time, the level of the microcirculation response was directly determined by the introduced amount of ozone, and we fixed non-linear dependence on it. Our study allowed us to show that only low doses of ozone (0.75 mcg/day) have proadaptive effects on the microcirculatory bed. This was shown both in the dynamics of the microcirculation index and the state of regulatory mechanisms. Middle ozone dose (2.5 mcg/day) also caused the stimulation of blood flow in small vessels, though this was predominantly through other mechanisms (neurogenic components). The most negative reaction of microcirculation was observed for high ozone dose (8 mcg). Conclusion: Despite the activation of microcirculation observed in this case, we have identified that the mechanism was primarily through the respiratory component regulation and via formation of "steal syndrome" in the tissue.

Publisher

Biomedical Research and Therapy

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3