Reduction of Conditional Factors in Causal Analysis

Author:

Liu HaitaoORCID,Dzitac Ioan,Guo Sicong

Abstract

Faced with a great number of conditional factors in big data causal analysis, the reduction algorithm put forward in this paper can reasonably reduce the number of conditional factors. Compared with the previous reduction methods, we take into consideration the influence of conditional factors on resulted factors, as well as the relationship among conditional factors themselves. The basic idea of the algorithm proposed in this paper is to establish the matrix of mutual deterministic degrees in between conditional factors. If a conditional factor f has a greater deterministic degree with respect to another conditional factor h, we will delete the factor h unless factor h has a greater deterministic degree with respect to f, then delete factor f in this case. With this reduction, we can ensure that the conditional factors participating in causal analysis are as irrelevant as possible. This is a reasonable requirement for causal analysis.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information Volume of Mass Function;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2020-10-26

2. Grey Wolf Optimizer-Based Approaches to Path Planning and Fuzzy Logic-based Tracking Control for Mobile Robots;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2020-04-21

3. TDBF: Two‐dimensional belief function;International Journal of Intelligent Systems;2019-06-13

4. Performer selection in Human Reliability analysis: D numbers approach;International Journal of Computers Communications & Control;2019-05-31

5. Combination of Evidential Sensor Reports with Distance Function and Belief Entropy in Fault Diagnosis;International Journal of Computers Communications & Control;2019-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3