Multi-Objective Binary PSO with Kernel P System on GPU

Author:

Elkhani Naeimeh,Muniyandi Ravie Chandren,Zhang Gexiang

Abstract

Computational cost is a big challenge for almost all intelligent algorithms which are run on CPU. In this regard, our proposed kernel P system multi-objective binary particle swarm optimization feature selection and classification method should perform with an efficient time that we aimed to settle via using potentials of membrane computing in parallel processing and nondeterminism. Moreover, GPUs perform better with latency-tolerant, highly parallel and independent tasks. In this study, to meet all the potentials of a membrane-inspired model particularly parallelism and to improve the time cost, feature selection method implemented on GPU. The time cost of the proposed method on CPU, GPU and Multicore indicates a significant improvement via implementing method on GPU.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3