Abstract
Most of the water losses occur during water distribution in pipelines during transportation. In order to eradicate the losses, an “IoT based water distribution system” integrated with “Fog and Cloud Computing" proposed for water distribution and underground health monitoring of pipes. For developing an effective water distribution system based on Internet of Things (IoT), the demand of the consumer should be analysed. So, towards predicting the water demand for consumers, Deep learning methodology called Long Short-Term Memory (LSTM) is compared with traditional Time Series methodology called Auto Regressive Integrated Moving Average (ARIMA) in terms of error and accuracy. Now based on demand prediction with higher accuracy, an IoT integrated “Water Distribution Network (WDN)” is designed using hydraulic engineering. This WDN design will ensure minimal losses during transportation and quality of water to the consumers. This will lead to development of a smart system for water distribution.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献