Deep Learning TCP for Mitigating NLoS Impairments in 5G mmWave
-
Published:2023-06-20
Issue:4
Volume:18
Page:
-
ISSN:1841-9844
-
Container-title:INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
-
language:
-
Short-container-title:INT J COMPUT COMMUN, Int. J. Comput. Commun. Control
Author:
Poorzare Reza,Calveras Anna
Abstract
5G and beyond 5G are revolutionizing cellular and ubiquitous networks with new features and capabilities. The new millimeter-wave frequency band can provide high data rates for the new generations of mobile networks but suffers from NLoS caused by obstacles, which causes packet drops that mislead TCP because the protocol interprets all drops as an indication of network congestion. The principal flaw of TCP in such networks is that the root for packet drops is not distinguishable for TCP, and the protocol takes it for granted that all losses are due to congestion. This paper presents a new TCP based on deep learning that can outperform other common TCPs in terms of throughput, RTT, and congestion window fluctuation. The primary contribution of deep learning is providing the ability to distinguish various conditions in the network. The simulation results revealed that the proposed protocol could outperform conventional TCPs such as Cubic, NewReno, Highspeed, and BBR.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Automatic Detection of Stalling Events using Machine Learning Algorithms;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2024-09-02