A Graph-Based PPO Approach in Multi-UAV Navigation for Communication Coverage
-
Published:2023-10-30
Issue:6
Volume:18
Page:
-
ISSN:1841-9844
-
Container-title:INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
-
language:
-
Short-container-title:INT J COMPUT COMMUN, Int. J. Comput. Commun. Control
Author:
Jiang Zhiling,Chen Yining,Wang Ke,Yang Bowei,Song Guanghua
Abstract
Multi-Agent Reinforcement Learning (MARL) is widely used to solve various problems in real life. In the multi-agent reinforcement learning tasks, there are multiple agents in the environment, the existing Proximal Policy Optimization (PPO) algorithm can be applied to multi-agent reinforcement learning. However, it cannot deal with the communication problem between agents. In order to resolve this issue, we propose a Graph-based PPO algorithm, this approach can solve the communication problem between agents and it can enhance the exploration efficiency of agents in the environment and speed up the learning process. We apply our algorithms to the task of multi-UAV navigation for communication coverage to verify the functionality and performance of our proposed algorithms.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献