Abstract
This paper deals with a comprehensive study on robust control of particle size distribution of fractal agglomerate in aerosol processes with simultaneous chemical reaction, nucleation, condensation and coagulation. Firstly, a general aerosol process is described by population balance and mass and energy balances, which describes the evolution of particle size distribution, continuous phase species and temperature of the aerosol system, respectively. A lognormal moment approximations of the population balance model is then presented. Then, the robust state feedback controller is designed for the aerosol process with some unknown uncertainties, the proposed controller is composed of an nominal control term and a robust control term so that it only ensures the stability of the closed-loop system, but also attenuates the effect of the unknown uncertainties on the system. A high-gain observer is adopted to estimate state variables required in the on-line implementation of the state feedback. Finally, the proposed robust controller is applied to an aerosol process for achieving an aerosol size distribution with desired geometric average particle diameter, the simulation results show the robustness properties of the controller with respect to parametric model uncertainty and unmodeled dynamics.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献