Ensemble Learning for Interpretable Concept Drift and Its Application to Drug Recommendation

Author:

Peng Yunjuan,Qiu Qi,Zhang Dalin,Yang Tianyu,Zhang Hailong

Abstract

During the COVID-19 epidemic, the online prescription pattern of Internet healthcare provides guarantee for the patients with chronic diseases and reduces the risk of cross-infection, but it also raises the burden of decision-making for doctors. Online drug recommendation system can effectively assist doctors by analysing the electronic medical records (EMR) of patients. Unlike commercial recommendations, the accuracy of drug recommendations should be very high due to their relevance to patient health. Besides, concept drift may occur in the drug treatment data streams, handling drift and location drift causes is critical to the accuracy and reliability of the recommended results. This paper proposes a multi-model fusion online drug recommendation system based on the association of drug and pathological features with online-nearline-offline architecture. The system transforms drug recommendation into pattern classification and adopts interpretable concept drift detection and adaptive ensemble classification algorithms. We apply the system to the Percutaneous Coronary Intervention (PCI) treatment process. The experiment results show our system performs nearly as good as doctors, the accuracy is close to 100%

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sub-clustering based recommendation system for stroke patient: Identification of a specific drug class for a given patient;Computers in Biology and Medicine;2024-03

2. Categorical Feature Encoding Techniques for Improved Classifier Performance when Dealing with Imbalanced Data of Fraudulent Transactions;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2023-05-09

3. A Multi-Criteria Decision Making Approach to Journal Selection and Ranking;2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG);2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3