Efficient Building Extraction for High Spatial Resolution Images Based on Dual Attention Network

Author:

Zhao Dandong,Zhao Haishi,Guan Renchu,Yang Chen

Abstract

Building extraction with high spatial resolution images becomes an important research in the field of computer vision for urban-related applications. Due to the rich detailed information and complex texture features presented in high spatial resolution images, the distribution of buildings is non-proportional and their difference of scales is obvious. General methods often provide confusion results with other ground objects. In this paper, a building extraction framework based on deep residual neural network with a self-attention mechanism is proposed. This mechanism contains two parts: one is the spatial attention module, which is used to aggregate and relate the local and global features at each position (short and long distance context information) of buildings; the other is channel attention module, in which the representation of comprehensive features (includes color, texture, geometric and high-level semantic feature) are improved. The combination of the dual attention modules makes buildings can be extracted from the complex backgrounds. The effectiveness of our method is validated by the experiments counted on a wide range high spatial resolution image, i.e., Jilin-1 Gaofen 02A imagery. Compared with some state-of-the-art segmentation methods, i.e., DeepLab-v3+, PSPNet, and PSANet algorithms, the proposed dual attention network-based method achieved high accuracy and intersection-over-union for extraction performance and show finest recognition integrity of buildings.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3