Ultra-short-term Load Forecasting Based on XGBoost-BiGRU

Author:

Chen Shuyi,Li Guo,Chang Kaixuan,Hu Xiang,Li Peiqi,Wang Yujue

Abstract

High-precision load forecasting serves as the foundation for power grid scheduling planning and safe economic operation. In scenarios where only historical power load data is available without other external information, fully exploiting meaningful features from the temporal load sequence is crucial for improving the accuracy of load forecasting. Therefore, an ultra-short-term load forecasting method that combines eXtreme gradient boosting (XGBoost) and bidirectional gated recurrent unit (BiGRU) is proposed in this paper. Considering various factors that affect loads, a candidate feature set is established, which includes temporal information and historical loads. XGBoost is used to select the features that contribute significantly to load forecasting, forming an optimal feature set. These optimal features are then used as inputs to the BiGRU, and the bayesian optimization algorithm is applied to optimize the network hyperparameters. Then the load forecasting model for the next 15 minutes based on BiGRU is generated by training iteratively. The proposed XGBoost-BiGRU method is validated on real load data from a province in China. Experimental results demonstrate that the method can effectively avoid the impact of redundant features, improving both prediction accuracy and efficiency. The research has significant importance for guiding real-time supply-demand balance calculations and scheduling in power grids.

Publisher

Agora University of Oradea

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3