Abstract
Manufacturing processes are usually complex ones, involving a significant number of parameters. Unconventional manufacturing processes, such as incremental forming is even more complex, and the establishment of some analytical relationships between parameters is difficult, largely due to the nonlinearities in the process. To overcome this drawback, artificial intelligence techniques were used to build empirical models from experimental data sets acquired from the manufacturing processes. The approach proposed in this work used an adaptive network-based fuzzy inference system to extract the value of technological force on Z-axis, which appears during incremental forming, considering a set of technological parameters (diameter of the tool, feed and incremental step) as inputs. Sets of experimental data were generated and processed by means of the proposed system, to make use of the learning ability of it to extract the empirical values of the technological force from rough data.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献