An Empirical Study of AML Approach for Credit Card Fraud Detection–Financial Transactions

Author:

Singh Ajeet,Jain AnuragORCID

Abstract

Credit card fraud is one of the flip sides of the digital world, where transactions are made without the knowledge of the genuine user. Based on the study of various papers published between 1994 and 2018 on credit card fraud, the following objectives are achieved: the various types of credit card frauds has identified and to detect automatically these frauds, an adaptive machine learning techniques (AMLTs) has studied and also their pros and cons has summarized. The various dataset are used in the literature has studied and categorized into the real and synthesized datasets.The performance matrices and evaluation criteria have summarized which has used to evaluate the fraud detection system.This study has also covered the deep analysis and comparison of the performance (i.e sensitivity, specificity, and accuracy) of existing machine learning techniques in the credit card fraud detection area.The findings of this study clearly show that supervised learning, card-not-present fraud, skimming fraud, and website cloning method has been used more frequently.This Study helps to new researchers by discussing the limitation of existing fraud detection techniques and providing helpful directions of research in the credit card fraud detection field.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure and Immutable Payment Algorithm Using Smart Cards and Hyperledger Blockchain;Communications in Computer and Information Science;2024

2. A Credit Card Fraud Detection Model Based on Multi-Feature Fusion and Generative Adversarial Network;Computers, Materials & Continua;2023

3. Evaluation of Supervised Machine Learning Approaches for Credit Card Fraud Detection;2022 14th Annual Undergraduate Research Conference on Applied Computing (URC);2022-11-23

4. An efficient credit card fraud detection approach using cost‐sensitive weak learner with imbalanced dataset;Computational Intelligence;2022-10-13

5. Analysis of Credit Card Fraud Detection Using Machine Learning Algorithms;International Journal of Advanced Research in Science, Communication and Technology;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3