An Efficient Approach towards Network Routing using Genetic Algorithm

Author:

Obeidat Alaa,Al-shalabi Mohammed

Abstract

The network field has been very popular in recent times and has aroused much of the attention of researchers. The network must keep working with the varying infrastructure and must adapt to rapid topology changes. Graphical representation of the networks with a series of edges varying over time can help in analysis and study. This paper presents a novel adaptive and dynamic network routing algorithm based on a Regenerate Genetic Algorithm (RGA) with the analysis of network delays. With the help of RGA at least a very good path, if not the shortest one, can be found starting from the origin and leading to a destination. Many algorithms are devised to solve the shortest path (SP) problem for example Dijkstra algorithm which can solve polynomial SP problems. These are equally effective in wired as well as wireless networks with fixed infrastructure. But the same algorithms offer exponential computational complexity in dealing with the real-time communication for rapidly changing network topologies. The proposed genetic algorithm (GA) provides more efficient and dynamic solutions despite changes in network topology, network change, link or node deletion from the network, and the network volume (with numerous routes).

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Multi-Objective Network Routing Optimization;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29

2. A Comprehensive Evaluation Method of Machining Center Components’ Importance Based on Combined Variable Weight;Mathematics;2024-01-19

3. A Mining Algorithm to Improve LSTM for Predicting Customer Churn in Railway Freight Traffic;Studies in Informatics and Control;2023-06-28

4. Smart Approach for Botnet Detection Based on Network Traffic Analysis;Journal of Electrical and Computer Engineering;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3