Author:
Li Ping,Wu Chunxue,Zhang Shaozhong,Yu Xinwu,Zhong Haidong
Abstract
Mining users’ preference patterns in e-commerce systems is a fertile area for a great many application directions, such as shopping intention analysis, prediction and personalized recommendation. The web page navigation logs contain much potentially useful information, and provide opportunities for understanding the correlation between users’ browsing patterns and what they want to buy. In this article, we propose a web browsing history mining based user preference discovery method for e-commerce systems. First of all, a user-browsing-history-hierarchical-presentationgraph to established to model the web browsing histories of an individual in common e-commerce systems, and secondly an interested web page detection algorithm is designed to extract users’ preference. Finally, a new method called UPSAWBH (User Preference Similarity Calculation Algorithm Based on Web Browsing History), which measure the level of users’ preference similarity on the basis of their web page click patterns, is put forward. In the proposed UPSAWBH, we take two factors into account: 1) the number of shared web page click sequence, and 2) the property of the clicked web page that reflects users’ shopping preference in e-commerce systems. We conduct experiments on real dataset, which is extracted from the server of our self-developed e-commerce system. The results indicate a good effectiveness of the proposed approach.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research and Development of Online Precision Marketing System Based on Decision Tree Algorithm;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10
2. E-commerce and Business Analytics: A Literature Review;Lecture Notes in Business Information Processing;2019