High-Performance Technique for Item Recommendation in Social Networks using Multiview Clustering

Author:

Anbazhagu U.V.,Niveditha V. R.,Rohith Bhat C.,T R Mahesh,Vinoth Kumar V ,B. Swapna

Abstract

Recommender Systems have been widely employed in information systems over the past few decades, making it easier for each user to choose their own products based on their past behaviour. Data mining tasks and visualization tools regularly use clustering techniques in the scientific and commercial arenas. It has been shown that clustering-based methods are effective and scalable to big data sets. The accuracy and coverage of clustering-based recommender systems are, however, somewhat low. In this paper, we suggest an improved multi-view clustering method for the recommendation of items in social networks to overcome these problems. To create better partitions, the artificial Bees colony optimization algorithm (ABC) is first used to improve the initial medoids’ selection. After that, users are clustered iteratively using views of both rating patterns as well as social information using multiview clustering (MVC) (i.e. trust and friendships). Ultimately, a framework is suggested for evaluating the various options. This research study suggests a novel MVC clustering approach using the ABC optimization technique. The proposed ABC-MVC algorithm’s usefulness in terms of enhancing accuracy is demonstrated by experimental findings performed on a real-world dataset and it is observed that it performs better than the pre-existing techniques and baselines.

Publisher

Agora University of Oradea

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3