Dual attention U-net for liver tumor segmentation in CT images

Author:

Alirr Omar Ibrahim

Abstract

Segmenting liver tumors in CT scans plays a vital role in medical analysis planning. The clinicians require a detailed 3D understanding of the tumor’s location and liver anatomy, to decide about the proper surgical resection approach. Manual segmentation requires a lot of efforts and time also it depends on the expertise of clinicians. An automatic U-net based method for liver tumors delineation in CT images is proposed. It relies on employing attention-based processes to enhance the performance of U-net. Hard attention and soft attention are used to orient the U-net in learning the intended features from the target CT scans. Soft attention mechanisms, spatial and channel attentions, are employed to help in extracting the long-range relationships and allow the network to successfully distinguish tumors from the surrounding parenchyma. The paper addressed the use of region based active contour technique as postprocessing step to improve the predicted segmented tumors. The proposed approach is validated using a challenging big LiTS datasets. The achieved Dice score for the segmenting of liver tumors is 0.81. The suggested method was successful in discriminating liver tumors from surrounding tissue in heterogeneous CT scans, demonstrating its generalizability and reliability to be used for automatic analysis of the liver tumors in daily clinical practice.

Publisher

Agora University of Oradea

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3