Coverage Hole Recovery Algorithm Based on Molecule Model in Heterogeneous WSNs

Author:

Song Xiaoli,Gong Yunzhan,Jin Dahai,Li Qiangyi,Jing Hengchang

Abstract

In diverse application fields, the increasing requisitions of Wireless Sensor Networks (WSNs) have more and more research dedicated to the question of sensor nodes’ deployment in recent years. For deployment of sensor nodes, some key points that should be taken into consideration are the coverage area to be monitored, energy consumed of nodes, connectivity, amount of deployed sensors and lifetime of the WSNs. This paper analyzes the wireless sensor network nodes deployment optimization problem. Wireless sensor nodes deployment determines the nodes’ capability and lifetime. For node deployment in heterogeneous sensor networks based on different probability sensing models of heterogeneous nodes, the author refers to the organic small molecule model and proposes a molecule sensing model of heterogeneous nodes in this paper. DSmT is an extension of the classical theory of evidence, which can combine with any type of trust function of an independent source, mainly concentrating on combined uncertainty, high conflict, and inaccurate source of evidence. Referring to the data fusion model, the changes in the network coverage ratio after using the new sensing model and data fusion algorithm are studied. According to the research results, the nodes deployment scheme of heterogeneous sensor networks based on the organic small molecule model is proposed in this paper. The simulation model is established by MATLAB software. The simulation results show that the effectiveness of the algorithm, the network coverage, and detection efficiency of nodes are improved, the lifetime of the network is prolonged, energy consumption and the number of deployment nodes are reduced, and the scope of perceiving is expanded. As a result, the coverage hole recovery algorithm can improve the detection performance of the network in the initial deployment phase and coverage hole recovery phase.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3