Urban Noise Analysis and Emergency Detection System using Lightweight End-to-End Convolutional Neural Network

Author:

Park Jinho,Yoo Taeyoung,Lee Seongjae,Kim Taehyoun

Abstract

In recent years, the application of deep learning to environmental sound classification (ESC) has received considerable attention owing to its powerful ability to recognize the context of urban sounds. In general, deep learning models with high accuracy require substantial computing and memory resources. Consequently, to apply complex deep learning models to ESC in the real world, model inference has been performed on cloud servers with powerful computing resources. However, heavy network traffic and security issues occur when inferences are performed on a cloud server. In addition, deploying a deep learning model trained on a single public ESC dataset may not be sufficient for classifying various classes of urban noise and emergency-related sounds. To address these problems, we propose an on-device, real-time urban sound monitoring system that can classify various urban sounds at low system construction costs. The proposed system consisted of an edge artificial intelligence (AI) node and a FIWARE-based server. To enable the real-time inference on a resource-constrained edge AI node, we developed a lightweight convolutional neural network (CNN) by adjusting the input and model configurations to achieve high accuracy with a low number of parameters. The model achieved 94.9% classification accuracy using only 331 K parameters on an integrated dataset that included 17 classes of urban noises and emergencies. Furthermore, a prototype of the proposed system was developed and evaluated to verify its feasibility. The prototype system was built at a cost of less than USD 50 and could perform the entire monitoring process every 3 s. We also visualized the sound monitoring data using Grafana on a FIWARE-based server.

Publisher

Agora University of Oradea

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT Embedded Smart Monitoring System with Edge Machine Learning for Beehive Management;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2024-07-01

2. Enhancing Wind Farm Reliability: A Field of View Enhanced Convolutional Neural Network-Based Model for Fault Diagnosis and Prevention;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2024-05-04

3. Fast Disaster Event Detection from Social Media: An Active Learning Method;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3