A Rough Set and Cellular Genetic Fusion Algorithm for Acute Critical Disease Prediction
-
Published:2020-11-20
Issue:6
Volume:15
Page:
-
ISSN:1841-9844
-
Container-title:INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
-
language:
-
Short-container-title:INT J COMPUT COMMUN, Int. J. Comput. Commun. Control
Author:
Wang Hongxin,Jia Lijing,Zhuang Heng,Li Xueyan,Zhao Yuzhuo,Pan Shuxiao,Wu Kainan,Li Jing,Li Tanshi
Abstract
This study is to solve the problems of an overly-broad scale of medical indicators, lack of retrospective research samples, insufficient depth of data mining, and low disease prediction accuracy. In this paper, we propose an intelligent screening algorithm that combines a genetic algorithm, cellular automata, and rough set theory. This algorithm can achieve high accuracy in predicting patient outcomes with a small number of indicators. And we compare it with the traditional genetic algorithm. We built the prediction model with 64 indicators based on the logistic regression (AUC 0.8628), support vector machine (AUC 0.5319), Naïve Bayes (AUC 0.7102), and AdaBoost algorithms (AUC 0.9095). Using the cellular genetic algorithm for attribute screening not only effectively reduces the number of indicators but also achieve almost the same accuracy of prediction with 8 indicators based on the logistic regression (AUC 0.8782), support vector machine (AUC 0.8525), Naïve Bayes (AUC 0.8408), and AdaBoost algorithms (AUC 0.8770). Compared with the traditional scoring system, the predictive model established in this paper can more accurately predict rebleeding accidents based on physiological test indicators and continuous patient indicators.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献