Author:
Muthukumar Venkatesan,Sivakami R.,Venkatesan Vinoth Kumar,Balajee J.,Mahesh T.R.,Mohan E.,Swapna B.
Abstract
The Internet of Things (IoT) and associated capabilities are becoming indispensable in the planning, operation, and administration of intricate systems of all sizes. High-end learning solutions that go beyond the boundaries of the problem are necessary for addressing the variety of communication concerns (compatibility, secure communication, etc.) in IoT settings. Building machine learning (ML) networks from disparate data sources is a cutting-edge practice known as Federated Learning (FL). In this article, we implement FL between edge-based servers and devices in a sparsely populated cloud to facilitate cohesive learning and the storage of critical information in smart IoT systems. FL enables collaborative training from a common model by aggregating smaller unit models via regulated edge network participants. Further, all the susceptible device’s information and sensitive message transactions are addressed via blockchain technology. Thus, a blockchain-based security mechanism is integrated to secure user privacy and facilitate widespread practical adoption. Finally, a comparison is made between the proposed model and the three best free, open-source Federated Learning models already in use (FedPD, FedProx, and FedAvg). In terms of statistical, and data heterogeneity (>70% SDI, >97% accuracy), the experimental findings suggest that the proposed model performs better than the existing techniques.
Publisher
Agora University of Oradea
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献