Secure Real-Time Computational Intelligence System Against Malicious QR Code Links

Author:

Wahsheh Heider A. M.,Al-Zahrani Mohammed S.

Abstract

Web attackers aim to propagate malicious links using various techniques to deceive users. They attempt to control victims’ devices or obtain their passwords remotely, thereby acquiring access to bank accounts, financial transactions, or private and sensitive information they trade via the Internet. QR codes are accessible, free, easy to use, and can be scanned through several free apps on smartphones. As there is no standard structure or authentication phase in QR code generation, such codes are vulnerable to suspicious online content embedding, i.e., phishing, Cross-Site Scripting (XSS), and malware. Many studies have highlighted the attacks that may be perpetrated using barcodes, and there are some security countermeasures. Several of these solutions are limited to malicious link detection methods or require knowledge of cryptographic techniques. This study’s main objective is to detect malicious URLs embedded in QR codes. A dataset of 90 000 benign and malicious URLs was collected from various resources, and their lexical properties were extracted. Two computational intelligence models, fuzzy logic and multilayer perceptron artificial neural network (MLP-ANN), were applied and compared. An MLP-ANN was identified as the best classifier for detecting malicious URLs, and a proactive, secure, real-time computational intelligence barcode scanner implementation (BarCI ) against malicious QR code links was proposed based on this classifier. The results demonstrate that this approach enables efficient real-time attack detection with 82.9% accuracy

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of QR Code-based Cyberattacks using a Lightweight Deep Learning Model;Engineering, Technology & Applied Science Research;2024-08-02

2. Enhancing Malicious QR Code Link Detection with Swarm-Intelligent Squirrel-Search Optimized ANN;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

3. Analyzing Hepatotoxicity of Marine Venoms Using Artificial Intelligence: An Ecoinformatics Perspective;2023 24th International Arab Conference on Information Technology (ACIT);2023-12-06

4. Research and Implementation of QR Code and Maze Conversion Based on VR;Lecture Notes on Data Engineering and Communications Technologies;2023

5. QR Codes Cryptography: A Lightweight Paradigm;International Conference on Information Systems and Intelligent Applications;2022-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3