A Novel Generative Image Inpainting Model with Dense Gated Convolutional Network

Author:

Ma Xiaoxuan,Deng Yibo,Zhang Lei,Li Zhiwen

Abstract

Damaged image inpainting is one of the hottest research fields in computer image processing. The development of deep learning, especially Convolutional Neural Network (CNN), has significantly enhanced the effect of image inpainting. However, the direct connection between convolution layers may increase the risk of gradient disappearance or overfitting during training process. In addition, pixel artifacts or visual inconsistencies may occur if the damaged area is inpainted directly. To solve the above problems, we propose a novel Dense Gated Convolutional Network (DGCN) for generative image inpainting by modifying the gated convolutional network structure in this paper. Firstly, Holistically-nested edge detector (HED) is utilized to predict the edge information of the missing areas to assist the subsequent inpainting task to reduce the generation of artifacts. Then, dense connections are added to the generative network to reduce the network parameters while reducing the risk of instability in the training process. Finally, the experimental results on CelebA and Places2 datasets show that the proposed model achieves better inpainting results in terms of PSNR, SSIM and visual effects compared with other classical image inpainting models. DGCN has the common advantages of gated convolution and dense connection, which can reduce network parameters and improve the inpainting effect of the network.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3